1.3. \textit{Derivabilidad}

Otro de los conceptos fundamentales que seguramente has estudiado en los cursos de matemática del liceo es el concepto de derivada. Recordemos la definición.

1.3.1. \textit{Derivabilidad de una función en un punto}

Definición 1.3.1. Derivada de una función en un punto.
Sean $f : U \rightarrow \mathbb{R}$ una función y x_0 un punto interior a U. Decimos que f es \textit{derivable en} x_0 si y sólo si, existe un número L tal que:

$$\lim_{{x \to x_0}} \frac{f(x) - f(x_0)}{x - x_0} = L$$

o, de manera equivalente, si existe un número L tal que:

$$\lim_{{h \to 0}} \frac{f(x_0 + h) - f(x_0)}{h} = L.$$

Si f es derivable en x_0 entonces al valor del límite recién mencionado se le llama \textit{derivada de f en el punto} x_0 y se lo indica con el símbolo $f'(x_0)$. Es decir:

$$f'(x_0) = \lim_{{x \to x_0}} \frac{f(x) - f(x_0)}{x - x_0}$$

(La derivada de f en x_0 también suele simbolizarse $\frac{df}{dx}(x_0)$.

Figura 1.11: Interpretación geométrica de la derivada.
Observación 1.3.1. Interpretación geométrica de la derivada. (figura 1.11).
El cociente incremental
\[
\frac{f(x) - f(x_0)}{x - x_0}
\]
es el coeficiente angular de la recta determinada por los puntos
\(A(x_0, f(x_0))\) y \(P(x, f(x))\). Es razonable pensar que cuando \(x\) “se acerca a \(x_0\)” la recta \(AP\) tiende a transformarse en lo que intuitivamente pensamos que debería ser la recta tangente a la gráfica de \(f\) en el punto \(A\). Esto motiva la siguiente definición.

Definición 1.3.2. Recta tangente a la gráfica de una función.
Sea \(f\) una función derivable en \(x_0\). La **recta tangente a la gráfica de \(f\) en el punto \(A(x_0, f(x_0))\)** es (por definición), la recta que pasa por dicho punto y que tiene como coeficiente angular la derivada de \(f\) en \(x_0\). Es decir, es la recta de ecuación:

\[
y = f(x_0) + f'(x_0)(x - x_0)
\]

Observación 1.3.2. Interpretación dinámica de la derivada.
Supongamos que tenemos cierta “magnitud” \(Y\) que depende de otra \(X\) mediante la función \(Y = f(X)\) (Piensen en “tasa de desempleo en función del tiempo” o “PBI en función del tiempo” o “inflación en función del desempleo”, etc). Cuando \(X\) toma el valor \(x_0\), el correspondiente valor de \(Y\) es \(f(x_0)\). Si, a partir de \(x_0\), la \(X\) se incrementa en \(h\), llegamos al valor \(x_0 + h\), que da lugar al valor \(f(x_0 + h)\) para la \(Y\). La diferencia \(f(x_0 + h) - f(x_0)\) es el incremento que ha experimentado la variable \(Y\) cuando la \(X\) se vio incrementada en \(h\). El cociente:

\[
\frac{\text{incremento en } Y}{\text{incremento en } X} = \frac{f(x_0 + h) - f(x_0)}{h}
\]

es la **razón de cambio media de \(Y\) respecto de \(X\)** cuando \(X\) pasa de \(x_0\) a \(x_0 + h\). Como lo expresa su propio nombre, este cociente nos da una idea de cómo cambia \(Y\) comparado con el cambio de \(X\). Si hacemos \(h\) tender a 0 obtenemos que la **razón de cambio instantánea** (de \(Y\) respecto de \(X\)) en \(x_0\) coincide con:

\[
\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = f'(x_0) = \frac{df}{dx}(x_0)
\]

La derivada puede interpretarse entonces como una **velocidad**. En este caso, como la “rápidez” con que cambia \(Y\) con respecto a \(X\) en el punto \(x_0\).

Continuamos repasando los resultados fundamentales vinculados al concepto de derivada. Las demostraciones de los teoremas que enunciaremos las puedes encontrar en el Apéndice A.

Teorema 1.3.1. Relación entre derivabilidad y continuidad.
Si \(f\) es derivable en \(x_0\) entonces \(f\) es continua en \(x_0\).

Observación 1.3.3. El recíproco del teorema anterior es falso, esto es, una función puede ser continua y no derivable. Por ejemplo, la función \(f(x) = |x|\) es continua en 0 pero no es derivable en dicho punto (como puede verificarse fácilmente).

Debes tener mucho cuidado entonces; la derivabilidad implica la continuidad

\[
f\text{ derivable en } x_0 \implies f\text{ continua en } x_0
\]
f continua en $x_0 \iff f$ derivable en x_0

Hay una manera alternativa de expresar la condición de derivabilidad:

Teorema 1.3.2. Una condición necesaria y suficiente para la derivabilidad.

Sea $f : U \to \mathbb{R}$ una función cuyo dominio U contiene algún entorno del punto x_0. Entonces se cumple que f es derivable en x_0 si, y sólo si, existen una constante L y una función $\alpha : U \to \mathbb{R}$ continua en x_0 con $\alpha(x_0) = 0$ tales que:

$$f(x) = f(x_0) + L \cdot (x - x_0) + \alpha(x) \cdot (x - x_0) \quad \forall x \in U.$$

Observación 1.3.4. La condición necesaria y suficiente de derivabilidad que acabamos de dar se llama condición de diferenciabilidad. Para funciones de una sola variable (que son las únicas con las que trabajaremos en este curso), los conceptos de derivabilidad y diferenciabilidad son equivalentes; pero cuando se pasa a trabajar en situaciones más generales (funciones de varias variables por ejemplo) la noción de diferenciabilidad es la de mayor relevancia. (Esto lo verás en el curso de Matemática II).

Observación 1.3.5. Aproximación lineal.

Sea $f : U \to \mathbb{R}$ una función derivable en el punto $x_0 \in U$. El teorema anterior nos permite asegurar que existe una función α continua en x_0 con $\alpha(x_0) = 0$ tal que:

$$f(x) = f(x_0) + f'(x_0) \cdot (x - x_0) + \alpha(x) \cdot (x - x_0) \quad \forall x \in U.$$

La expresión $f(x_0) + f'(x_0) \cdot (x - x_0)$ no es otra cosa que la ordenada (correspondiente a la abscisa x) de la tangente a la gráfica de f en el punto $A(x_0, f(x_0))$. Como $\lim_{x \to x_0} \alpha(x) = 0$, el sumando $\alpha(x) \cdot (x - x_0)$ tiende a cero "más rápido"(es un infinitésimo de mayor orden) que $f'(x_0) \cdot (x - x_0)$ para $x \to x_0$ (estamos suponiendo aquí que $f'(x_0) \neq 0$). Luego, resulta razonable pensar que si trabajamos con valores de x bastante próximos a x_0, la expresión $\alpha(x) \cdot (x - x_0)$ será "despreciable" frente a $f'(x_0) \cdot (x - x_0)$. Es así que, si trabajamos cerca de x_0, podremos "aproximar" $f(x)$ por $f(x_0) + f'(x_0) \cdot (x - x_0)$, es decir, podremos aproximar la función por su tangente en el punto. Estas consideraciones informales las vamos a estudiar con más detalle en el Capítulo 6.
Teorema 1.3.3. Suma, producto y cociente de funciones derivables.
Sean \(f \) y \(g \) dos funciones derivables en un punto \(a \). Entonces se cumple que:

1. \(f + g \) es derivable en \(a \) y \((f + g)'(a) = f'(a) + g'(a) \).
2. \(f \cdot g \) es derivable en \(a \) y \((f \cdot g)'(a) = f'(a)g(a) + f(a)g'(a) \).
3. Si \(g(a) \neq 0 \) entonces \(f/g \) es derivable en \(a \) y \((f/g)'(a) = \frac{f'(a)g(a) - f(a)g'(a)}{(g(a))^2} \).

Otro resultado central en la teoría de derivación es el teorema de la derivada de la función compuesta. Empecemos entonces repasando el concepto de composición de funciones. La situación es la siguiente: tenemos dos funciones \(f : U \rightarrow \mathbb{R} \) y \(g : V \rightarrow \mathbb{R} \) con dominios \(U \) y \(V \) respectivamente y nos interesa aplicarlas sucesivamente. A cada \(x \) de \(U \) queremos aplicarle la función \(f \) y al resultado obtenido (o sea \(f(x) \)) queremos aplicarle la función \(g \).

\[
\begin{array}{c}
\text{x} \xrightarrow{f} f(x) \xrightarrow{g} g[f(x)]
\end{array}
\]

Para que esto pueda hacerse necesitamos que los valores \(f(x) \) caigan en el dominio de la función \(g \), y por lo tanto tendrá que cumplirse que \(f(x) \in V \), \(\forall x \in U \).

La composición de \(g \) con \(f \) (la función compuesta de la \(g \) con la \(f \)) es la función que a cada \(x \in U \) le hace corresponder directamente el valor \(g[f(x)] \). Esta nueva función se simboliza \(g \circ f \).

Definición 1.3.3. Composición de funciones.
Sean \(f : U \rightarrow \mathbb{R} \) y \(g : V \rightarrow \mathbb{R} \) dos funciones a valores reales tales que \(f(U) \subseteq V \) (o sea que \(f(x) \in V \), \(\forall x \in U \)). La función compuesta de \(g \) con \(f \) es la función que indicaremos \(g \circ f \) y que está definida por:

\[
g \circ f : U \rightarrow \mathbb{R} \quad \text{y} \quad (g \circ f)(x) = g[f(x)], \quad \forall x \in U.
\]

La composición preserva la continuidad y la derivabilidad de las funciones. Este hecho queda enunciado con precisión en los dos próximos teoremas:

Teorema 1.3.4. Continuidad de la función compuesta.
Sean \(f : U \rightarrow \mathbb{R} \) y \(g : V \rightarrow \mathbb{R} \) dos funciones tales que \(f(U) \subseteq V \). Si \(f \) es continua en \(a \in U \) y \(g \) es continua en \(f(a) \), entonces \(g \circ f \) es continua en \(a \).
Teorema 1.3.5. Regla de la cadena. (teorema de la derivada de la función compuesta.) Sean \(f : U \rightarrow \mathbb{R} \) y \(g : V \rightarrow \mathbb{R} \) dos funciones tales que \(f(U) \subset V \). Si \(f \) es derivable en \(a \in U \) y \(g \) es derivable en \(f(a) \), entonces \(g \circ f \) es derivable en \(a \) y se cumple que

\[
(g \circ f)'(a) = g'(f(a)) f'(a)
\]

Observación 1.3.6. Función derivada. Supongamos que \(f \) es una función derivable en cada punto de cierto conjunto \(U \). En este caso podemos considerar la función que a cada \(x \in U \) le hace corresponder el número \(f'(x) \). Esta nueva función se llama función derivada de \(f \), y está definida entonces por:

\[
f' : U \rightarrow \mathbb{R} \quad x \mapsto f'(x)
\]

Ejemplo 1.3.1. Supongamos que queremos calcular la derivada de la función \(h(x) = L|f(x)| \) en donde \(f \) es una función derivable y que no se anula en cierto conjunto \(U \). Esta función \(h \) la reconocemos como la composición de \(g \) con \(f \) en donde \(g \) viene dada por \(g(x) = L|x| \). De la función \(g \) conocemos su derivada (es \(\frac{1}{2} \)) y entonces, si aplicamos la regla de la cadena para \(x \in U \) obtenemos:

\[
(L|f(x)|)' = h'(x) = g'(f(x)) f'(x) = \frac{1}{f(x)} f'(x) = \frac{f'(x)}{f(x)}
\]

Hemos obtenido entonces la función derivada de \(h \). Esta función es:

\[
h' : U \rightarrow \mathbb{R} \quad h'(x) = \frac{f'(x)}{f(x)}, \quad \forall x \in U
\]

A partir del conocimiento de las derivadas de las funciones trascendentes elementales y de la aplicación de la regla de la cadena se deduce la “tabla de derivadas” que presentamos en la próxima página. En la misma no hemos indicado las condiciones de existencia de la derivada.

En cada caso particular deberás analizar para cuales valores de \(x \) es aplicable el resultado. (Hemos incluido las funciones trigonométricas inversas que, de hecho, serán introducidas en el próximo capítulo).

En los siguientes ejercicios te pedimos que intentes resolver una serie de cuestiones que involucran el concepto y el cálculo de derivadas.

Ejercicio 1.3.1. Encuentra la ecuación de la tangente a la gráfica de \(f \) en el punto de abscisa \(1 \) siendo \(f(x) = x^3 - 2x^2 + 4 \).

Ejercicio 1.3.2. Sea \(f(x) = \frac{1}{3}x^3 + 2x^2 + 3x + 1 \). Halla los puntos de la gráfica de \(f \) en los cuales la tangente es horizontal.

Ejercicio 1.3.3. Sea \(f(x) = L|2x + 1| \). Halla los puntos en los que la tangente a la gráfica de \(f \) es paralela a la recta de ecuación \(2x - 3y + 20 = 0 \).

Ejercicio 1.3.4. Encuentra los valores de \(a \) y \(b \) para que \(f(x) = e^x \) y \(g(x) = -x^2 + ax + b \) tengan tangente común en el punto de abscisa 0.

Ejercicio 1.3.5. El producto bruto interno (PBI) de cierto país era \(N(t) = t^2 + 5t + 106 \) millones de dólares \(t \) años después de 1980. ¿A qué razón cambió el PBI con respecto al tiempo en 1988?
Ejercicio 1.3.6. Calcula la función derivada de las siguientes funciones:
1) \(f(x) = (x^2 + 1) e^{-2x} \)
2) \(f(x) = \frac{x^2 + 4x + 1}{x^2 + 1} \)
3) \(f(x) = \left| \frac{x - 1}{x + 1} \right| \)
4) \(f(x) = 5 - 3x + L \frac{3x - 1}{x + 1} \)
5) \(f(x) = L \left(x + \sqrt{1 + x^2} \right) \)
6) \(f(x) = (x^2 + 2x) e^{x^2} \)
7) \(f(x) = 2(x - 1) + \sqrt{x^2 - 6x + 5} \)
8) \(f(x) = \frac{x^2}{x + 1} + L \left| 1 - x^2 \right| \)
9) \(f(x) = \frac{x - 1}{x} e^{1/x} \)

La siguiente definición la usaremos en los próximos capítulos. Se trata de la noción de función derivable en un intervalo cerrado, concepto que sólo involucra la derivabilidad lateral en los extremos del intervalo. (Observa la analogía con la Definición 1.1.2).

Definición 1.3.4. Función derivable en un intervalo cerrado.
Sea \(f: [a, b] \rightarrow \mathbb{R} \) una función cuyo dominio es el intervalo cerrado \([a, b]\) y que toma valores reales. Decimos que \(f \) es derivable en \([a, b]\) cuando se cumplen las siguientes condiciones:
- Para cada \(x_0 \in (a, b) \), \(f \) es derivable en \(x_0 \); o sea que: \(\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \) existe y es finito para \(\forall x \in (a, b) \).
- \(f \) es derivable en \(a^+ \); o sea que: \(\lim_{x \to a^+} \frac{f(x) - f(a)}{x - a} \) existe y es finito.
- \(f \) es derivable en \(b^- \); o sea que: \(\lim_{x \to b^-} \frac{f(x) - f(b)}{x - b} \) existe y es finito.

1.3.2. Propiedades básicas de las funciones derivables en intervalos

En la sección anterior habíamos obtenido una serie de resultados para funciones continuas en un intervalo cerrado. Si agregamos la hipótesis de derivabilidad podemos obtener nuevas conclusiones. Una de las más importantes viene dada por el “Teorema de Lagrange”.

Teorema 1.3.6. Teorema del valor medio de Lagrange.

Sea \(f \) una función continua en \([a, b]\) y derivable en \((a, b)\) (o sea derivable en cada uno de los puntos del intervalo abierto \((a, b)\)). Entonces existe al menos un punto \(c \in (a, b) \) tal que:
\[f(b) - f(a) = f'(c) \quad (b - a) \]

Observación 1.3.7.
1. El teorema asegura que el incremento de la función entre los extremos del intervalo (es decir \(f(b) - f(a) \)) coincide con el producto del valor de la derivada en algún punto intermedio por la longitud del intervalo. Del punto intermedio \(c \) (que no tiene por qué ser único) sólo se puede saber a priori que está entre \(a \) y \(b \). El teorema (y su demostración) no dice cómo hallarlo.
2. La moraleja de este resultado es la siguiente: “si tenemos información acerca de la derivada de una función, entonces podemos obtener información sobre la propia función”. Veamos algunas consecuencias del teorema de Lagrange que explican lo que acabamos de afirmar.

Teorema 1.3.7. Derivada nula.

Sea \(f \) una función continua en \([a, b]\) y derivable en \((a, b)\). Si \(f'(x) = 0 \), \(\forall x \in (a, b) \) entonces la función \(f \) es constante en \([a, b]\).
Demuestra. Sea \(x_2 \) un punto cualquiera del intervalo \((a, b)\). A partir de las hipótesis resulta claro que \(f \) es continua en \([a, x_2)\) y derivable en \((a, x_2)\). Aplicando el teorema de Lagrange a la función \(f \) en el intervalo \([a, x_2)\) podemos asegurar la existencia de un punto \(c \in (a, x_2) \) tal que \(f(x_2) - f(a) = f'(c)(x_2 - a) \). Como \(f'(c) = 0 \) (pues \(f'(x) = 0, \forall x \in (a, b) \)) deducimos que \(f(x_2) = f(a) \), y esto implica que \(f \) es una función constante en \([a, b] \). ♠

Observación 1.3.8. Si sólo sabemos que \(f \) es derivable en \((a, b)\) y que \(f'(x) = 0, \forall x \in (a, b) \), entonces solamente podremos asegurar que \(f \) es constante en \((a, b)\). La demostración de esta afirmación es análoga a la anterior aunque, en este caso, tendremos que tomar dos puntos cualesquiera \(x_1, x_2 \in (a, b) \) con \(x_1 < x_2 \) y aplicar el teorema de Lagrange en el intervalo \((x_1, x_2)\). Sería interesante que escribieras los detalles.

Teorema 1.3.8. Funciones con igual derivada.
Sean \(G \) y \(H \) dos funciones que tienen la misma derivada en un intervalo \(I \) \((G'(x) = H'(x), \forall x \in I)\). Entonces existe \(k \in \mathbb{R} \) tal que \(G(x) - H(x) = k, \forall x \in I \).

Demostración. Para todo punto \(x \) del intervalo \(I \) se tiene:

\[
G'(x) = H'(x) \implies G'(x) - H'(x) = 0 \implies (G(x) - H(x))' = 0
\]

Hemos verificado que la función \(G(x) - H(x) \) tiene derivada nula en \(I \). El teorema anterior nos permite asegurar entonces que existe \(k \in \mathbb{R} \) tal que \(G(x) - H(x) = k, \forall x \in I \). ♠

Teorema 1.3.9. Relación entre derivada y crecimiento.
Sea \(f \) una función continua en \([a, b]\) y derivable en \((a, b)\). Si \(f'(x) > 0, \forall x \in (a, b) \) entonces la función es estrictamente creciente en \([a, b]\).

Demostración. Sean \(x_1 \) y \(x_2 \) dos puntos cualesquiera del intervalo \([a, b]\) con \(x_1 < x_2 \). Aplicando el teorema de Lagrange a la función \(f \) en el intervalo \([x_1, x_2]\) podemos asegurar la existencia de un punto \(c \in (x_1, x_2) \) tal que \(f(x_2) - f(x_1) = f'(c)(x_2 - x_1) \). Como \(f'(c) > 0 \) (pues \(f'(x) > 0, \forall x \in (a, b) \)) y \(x_2 - x_1 > 0 \) deducimos que \(f(x_2) > f(x_1) \). Hemos demostrado que \(f(x_1) < f(x_2) \) para toda pareja de puntos \(x_1, x_2 \in [a, b] \) con \(x_1 < x_2 \) y esto quiere decir precisamente que \(f \) es estrictamente creciente en \([a, b]\). ♠

Ejercicio 1.3.7.
(a) Sea \(f \) una función continua en \([a, b]\) y derivable en \((a, b)\). Supongamos además que existe \(M > 0 \) tal que \(|f'(x)| \leq M, \forall x \in (a, b) \).
Demuestra que \(|f(x_2) - f(x_1)| \leq M |x_2 - x_1|, \forall x_1, x_2 \in [a, b]\).
(b) Demuestra que \(|sen x - sen y| \leq |x - y|, \forall x, y \in \mathbb{R}\).

Ejercicio 1.3.8. Encuentra el error en el siguiente “razonamiento”:
Sea \(f \) una función con derivada continua en todo \(\mathbb{R} \). Fijando \(x \in \mathbb{R} \) y aplicando el teorema del valor medio en \([0, x]\) podemos escribir que \(f(x) - f(0) = f'(c)(x - 0) = f'(c)x \). Como \(f'(c) \) es una constante (llamemósle \(m \)) hemos demostrado que \(f(x) = mx + f(0), \forall x \in \mathbb{R} \). Es decir, hemos demostrado que toda función con derivada continua es una función lineal. (??!!)